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An Interpretation of the Stability of a 
Turbulent Shear Flow Near a Rough Wall 

A. K. Lewkowiczt 

A conventional, small perturbation, stability analysis has been applied to a fully developed turbulent shear 
flow in a parallel duet with rough walls. This is an attempt to detect the inherent state of flow stability to 
quasi-regular disturbances emanating from the surface roughness elements. The surface roughness is 
represented by the usual roughness Reynolds number; it is fed into the analysis through an assumed mean 
velocity profile valid between the viscous sublayer and the inner (wall) region. An eddy viscosity model is 
used to secure the equation closure and the final equation for the perturbation amplitude has been solved 
numerically using the techniques developed for the Orr-Sommerfeld equation. 

Within the domain of realistic flow conditions, and for a range of surface roughness amplitudes, a local 
minimum of stability in terms of the longitudinal wave number has been found. However, it is not implied 
that it is a minimum minimorum, as only a limited range of surface roughnesses has been tried. 
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NOTATION 

width of two-dimensional parallel channel 
complex wave propagation velocity (= C, + iC~) 
damping/amplification factor (imaginary 
component) 
wave propagation velocity in longitudinal 
direction (real) 
length scale of surface roughness 
surface roughness Reynolds number (=huo/v) 
functional 
imaginary number (= x / -  1) 
wave number 
length scale (>> I') 
length scale pertaining to q' (~  l) 
pressure component corresponding to 
general flow field quantity (= Q + ~ + q') 
any mean flow component 
any random turbulent component 
any oscillating flow component of relatively 
low frequency 
flow Reynolds number (= aV/v) 
flow Reynolds number of a boundary layer 
period of low frequency oscillations 
time 
nondimensional velocity in wall shear flows 
(= O/Uo) 
velocity component corresponding to 
(k = 1, 2, 3 = cartesian tensor index) 
velocity components corresponding to q' 
((i = 1, 2, 3; k = 1, 2, 3) = cartesian indices) 
wall friction velocity {= x/(z0/p)} 
velocity components corresponding to 
((i = 1, 2, 3; k = 1, 2, 3) = cartesian indices) 
average velocity in channel 
amplitude of transverse oscillating velocity 
longitudinal coordinate (= x 1 ) 
cartesian coordinates ((i = 1, 2, 3; 
k = 1, 2, 3) = cartesian indices) 
position vector 
transverse coordinate (= Xz) 
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nondimensional distance from wall (=yuo/v) 
edge of viscous sublayer (in terms of y,) 
von Kfirm~in constant (~0"41) 
kinematic viscosity of fluid 
eddy viscosity of turbulent motion 
fluid density 
wall friction stress 
complex frequency of oscillations (= kC) 
(overhead bar) time/space average 
phase average 
differentiation with respect to y (=d/dy) 

1 INTRODUCTION 

Practical aspects of the effects of surface roughness (in 
particular of marine nature) have been studied by many 
and recently in some greater depth by the Liverpool 
University Group (e.g., (1), (2)). Apart from the problem 
of the local wall friction (due to the form and molecular 
drag components), being the outcome of a complex 
interaction between the turbulent and mean flow felds, 
it is thought that the surface roughness may affect the 
general stability of the resultant turbulence. Therefore, 
an analysis, based on already tried techniques, could 
prove 'instrumental' in studying the problem generally. 
It is tentatively explored here. 

Hussain and Reynolds (3) and (4) investigated experi- 
mentally a two-dimensional turbulent channel flow 
with a periodic ('organized wave') component of 
frequency 25-100 Hz introduced artificially into the 
flow. All turbulent field quantities (velocities, pressure, 
etc:) in such a situation comprise three components: 

(1) a mean flow component, ~; 
(2) a relatively large oscillating component, ~, of scale l; 
(3) a random turbulent component, q', of scale 1' ~ 1. 

Hence for a general field quantity one writes 

Q = Q. + cl + q' (1) 

The same model is postulated here for turbulent shear 
flows near a rough surface, the roughness profile of 
which contains a wavy, or nearly wavy, nonseparating 
low frequency component creating these relatively large 
periodic oscillations. 
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2 AVERAGED BASIC EQUATIONS 

Invoking the definition of 'phase average' 

(q)  = lim 1 ~ q(x, t + nT )  (2) 
n.~oo n 

where x is the position vector, t is the time, and T is the 
period of oscillations, Hussain and Reynolds demon- 
strate that 

(Q)  = (~ + ~ (3) 

This averaging process eliminates the random turbulent 
component (i.e., filters out q' from the total signal). 

Subsequently, Reynolds and Hussain (5) derived rig- 
orously the pertaining dynamic equations of motion by 
applying the transformation (1) in the Navier-Stokes 
equations along with the usual time averaging followed 
by the phase averaging (eq. (2)). Their result, in cartesian 
tensor notation, reads as follows 

8~i - Ofii O 0  1 0 p  ¢~2~l i 

{ (U,  ak - -  f i , f i k )  - -  ( ( a ; f i Z )  - -  U;UZ)} (4 )  

together with the pertaining flow continuity equations 

_  u'i _ 0 ( 5 )  
c~xi 8xi 8x~ 

3 LINEARIZED EQUATIONS OF STABILITY 
AND MODEL OF TURBULENCE 

Now in the spirit of the classical theory of hydrodynamic 
stability, these equations can be linearized by applying 
the small perturbation technique to the dynamic equa- 
tions of motion. As usual, they are then reduced to the 
parallel mean flow for simplicity. However, one must 
bear in mind that, unlike the equations for laminar 
flows, the last term on the right of eq. (4) renders it 
indeterminate unless some closure conditions are found 
which can be drawn from the semi-empirical theories of 
turbulence. This will be dealt with later. 

A standard expression for 0, treating it as a small 
perturbation (cf. e.g., Betchov and Criminale (6)) for 
pure two-dimensional oscillations, is 

1 
= ~q(y) exp {ik(x - Ct)} + conjugate part (6) 

where i = ~ / -  1 ; k is the wave number in the direction 
of x; C = C, + iCi which is the wave propagation vel- 
ocity; C, is the wave propagation velocity in x-direction; 
Ci is the damping (Ci < 0)/amplification (Ci > 0) factor. 

The circular frequency of oscillation is ~ = kC. Re- 
stricting the present case to homogeneously distributed 
surface roughnesses (waviness), there is no spatial 
development of the perturbations but merely a temporal 
one. 

Expressing the oscillating terms in eqs (4) and (5) in 
terms of eq. (6) and eliminating/~, a single, fourth-order, 
ordinary differential equation for the transverse pertur- 
bation amplitude, v, emerges. It is the Orr-Sommerfeld 
equation supplemented by the oscillating Reynolds 
stress terms. 

The authors of reference (5) managed to account for 
the extra terms using Lumley's (7) turbulent stress/strain 

relationship which involves the eddy viscosity vr of the 
basic shear flow. Their resultant equation for v is 

(tJ - C)(v" - k2v) - tJ"v 

i 
+~{(V+VT)(V .... - 2k2v " + k4v) 

+ 2VT(V"' -- k2v ') + v'~(v" + k2v)} = 0 (7) 

where (') - d/dy.  
Of course, eq. (7) converts immediately to the pure 

Orr-Sommerfeld equation for vr = O. 
In order to solve eq. (7) one requires information 

about [7(y) and VT(y). As a 'pilot' exercise, it has been 
decided to calculate the two-dimensional, fully devel- 
oped turbulent flow in a channel with rough walls a 
apart. The respective boundary conditions are 

v(O) = v'(O) = v(a) = v'(a) = 0 (8) 

Instead of the two latter boundary conditions it is 
numerically more appropriate to employ the conditions 
of symmetry at the centreline, i.e., v(a/2) = v"(a/2) = O. 

4 MEAN FLOW AND EDDY VISCOSITY CLOSURE 

With regard to the closure input, two variants have been 
tried. 

(1) The quasi-laminar approach--by which one feeds in- 
formation about turbulence into the system solely 
through the mean velocity field [7(y). Here it appears 
particularly appropriate to use the Hudimoto (8) ex- 
pression which in 'wall' variables U ,  = U/uo and 
y ,  = yu o/v (u 0 is the wall friction velocity) reads 

1 
U, = Yv, + ~ In [De(y, - Yv,) 

+ x/{1 + 4x2(y, - My,)2}] 

1 - xf{1 + 4x2(y, - yv,) 2} 
+ 2~2(y * _ y~.) (9) 

where y~. = thickness of viscous sublayer.The effect 
of eddy viscosity is ignored (vr = 0) in this case. 

(2) The eddy-viscosity approach in which, in addition to 
the same U(y) input (as in (1)), one can use 

d U ,  (10) V~v = 1 + K2(y, _ yv,)2 dy ,  

which is fully consistent with eq. (9). 

In both cases, Millionshchikov's (9) hypothesis of the 
geometrically additive nature of the surface roughness 
effects has been applied. This necessitates replacing 
( y , -  y~,) with (y, + h , -  2yr,), in eqs. (9) and (10), 
where h, is the roughness Reynolds number. 

Equations (9) and (10) are a useful device, particularly 
so, because both yo, and h,  may be fed arbitrarily into 
them. This freedom permits the stability tests to be 
parametrically related to the state of surface roughness. 

5 SOLUTION AND VARIATIONAL 
INTERPRETATION OF RESULTS 

The numerical solution of the problem can be carried 
out quite effectively and efficiently by means of a method 
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based on the Riccati transformation technique described 
by Jankowski, Takeuchi, and Gerstin (10). 

Actual calculations have been performedt on a 1906S 
computer assuming the flow Reynolds number 
Re = aV/v  = 104 (where V is the channel average vel- 
ocity) and Yv* = 5, for both cases: Vr = 0 and VT ~ O. 

Omitting the bulk of the working results pertaining to 
the computations, reference is made here to Goldshtik's 
(11) formulation of the principle of maximum stability of 
turbulent shear flows in response to external pertur- 
b a t i o n s - i n  this case to the low frequency effects of the 
wall roughness. 

According to Goldshtik, the stability measure is a 
functional in relation to the class of velocity profiles with 
variational coefficients such that 

11 = sup Ci(k) (11) 
k 

since Ci depends on k. Function Ci(k) may have more 
than one local maximum; the absolute maximum (cf. eq. 
(11)) must be found in order to intercept the most vul- 
nerable stability case. Naturally, the most stable is the 
fl0w for which 11 assumes the lowest negative value 
(absolute minimum). 

Unfortunately, functional I1 is not always well 
behaved with respect to convenient flow parameters. On 
account of this, Goldshtik and Kutateladze (12) in- 
vented another functional. It is less susceptible to such 
weaknesses as it is based on the concept of kinetic energy 
of oscillations ( ~  exp ( - 2 k C i t ) ,  for negative Ci). The 
functional reads 

.'.~" .oo d(ln k) 
I2, s = ~2 dk dt dx ~ - t  ~/. ~ (12) 

0 '  " 0  , 

where N designates the individual member of the class of 
flows (in the present case N = h,). For stable flows I2, N 
is finite. Wherever Ci, N approaches zero instability sets 
in and correspondingly 12. N --* ~-  

Intuitive interpretation of eq. (6), or more rigorously, 
an asymptotic expansion of the solution of eq. (7) for 
large and small values of k, shows that principal contri- 
butions to 12. N come from the short and long wavelengths 
of the oscillatory perturbations. This is independent of 
U(y) but dependent on the flow Reynolds number. 

Taking a class of turbulent shear flows dependent on a 
flow parameter N (for example, N might be the exponent 
of the power-law approximation in turbulent boundary 
layers and fully developed turbulent pipe flows) one 
computes the plots Ci, N(k)-curves. Incidentally, in an 
exercise such as that referred to in parentheses above it 
would be quite in order not to use anything more than 
vr = constant, or even vr = 0, bearing in mind the 
crudeness of the power-law approximation in the first 
place. 

Interesting calculations were carried out in reference 
(12) for a turbulent shear flow near a solid (smooth) wall 
with the mean velocity distribution established from the 
eddy viscosity relationship: vr = v + XUo y, but ignoring 
the stress/strain relationship terms in eq. (7), i.e., solving 
it as an Orr-Sommerfeld equation. The final result 

t by Dr D. Hesketh. 
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Fig. 1. Natural 'stability' functional of yon K~irm~in constant for tur- 
bulent wall shear flow (after Goldshtik and Kutateladze) 

plotted in Fig. 1 shows the most stable flow at 
x ~ 0.4--which is in accord with many experimental 
findings and thus confirms the universally accepted 
value. This is mentioned here only parenthetically to 
indicate the role the stability analysis can play in theor- 
etical investigations of the wall turbulence. Of  course, 
there is no other connection between Goldshtik and 
Kutateladze's problem and the present wall roughness 
stability effect. 

6 DISCUSSION AND CONCLUSIONS 

The above Russian variational rationale has been finally 
employed in presenting the calculations evolved for the 
purpose of this article, as described earlier on in sub- 
section-5. The parameter identified with N is the 
roughness Reynolds number h, and the 'specific' presen- 
tation of the ensuing results is shown in Fig. 2. Two lots 
of curves are presented here: (a) continuous curves rep- 
resenting solutions of the complete eq. (7) with vr ~ 0, 
for values of h, = 0"1, 1, 10, 102, and 103, and (b) broken 
curves for values of h, = 1, 10, and 102, all for vr = O. 

The corresponding curves for the two eddy viscosity 
cases are not too different and certainly show the same 
trend. It appears that, for the limited data available, the 
least stable is the flow condition at h, ~ 1. The absolute 
maximum of Ci ~Up, apart from the terminal limits, k ~ 0 
and k --, oo, occurs at ka ~ 11 for vr ~ 0; for VT = 0 it 
takes place, albeit less distinctly, at ka ,~ 10. With in- 
creasing and decreasing roughness Reynolds number the 
instability diminishes. This is not surprising as the fully 
rough regime promotes naturally turbulent diffusion 
near the wall and also generates additional relatively 
high frequency turbulence. These two agents are likely to 
be responsible for the noticeable stabilization of the tur- 
bulent flow for h, = 10 and higher. 

The problem has not been without numerical 
difficulties, specifically, the convergence in the numerical 
treatment of eq. (7)combined with eqs. (8)-(11) has been 
troublesome (although not so much for v,r= 0). The 
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Damping factor for fully developed turbulent duct flow as function of wave number  and parametrically dependent on magnitude 

of surface roughness 

similarity of the vr = 0 and vr ~ 0 curves in Fig. 2 seems 
to indicate that the vr ~ 0 curves are probably numer- 
ically acceptable. This speculative remark is based on 
the fact that with vr = 0, eq. (7) becomes the classical 
Orr-Sommerfeld equation which had been solved over 
the years by several independent numerical schemes, e.g., 
references (3) and (5) and following analytical solutions 
of the theory of hydrodynamic stability. The present sol- 
ution is not much different from such numerical schemes 
(cf. (reference 10)). With vr :# 0 the modified Orr-  
Sommerfeld equation could have assumed a less stable 
nature. There is not much evidence for that and the 
closeness of vr = 0 and vr ~ 0 solutions seems to sug- 
gest that the 'turbulent-cum-fluctuating' stress tensor 
may have merely a corrective influence in the present 
case, anyway. 

It would be very interesting, and indeed desirable, to 
see if the surface roughness, which renders the fully tur- 
bulent wall region least stable (in this case h, = 1), has 
any profound effect on the development, and possible 
separation, of the turbulent boundary layer. What is 
required here is a series of repetitive calculations of an 
arbitrary boundary layer, under an adverse pressure 
gradient, with all external parameters artificially fixed, 
but with variable h , .  A correlation should be sought 
between Inf [Ci(h,, Re)] and some unusual development 
feature(s) of the boundary layer, e.g., accelerated separa- 
tion, sudden variation in the wall friction, etc. A method 
of calculating turbulent boundary layers on rough walls, 
recently evolved by A. J. Musker (2), could be in- 
strumental in such an exercise. 
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